Chip发表阿卜杜拉国王科技大学Xiaohang Li团队综述论文:电子革命—超强半导体的曙光
FUTURE远见| 2024-01-12
Future|远见
Future|远见future选编
这篇综述文章讲述的是一种名为宽带隙半导体(如图 1 所示)¹⁻³ 的特殊材料。与硅等普通半导体不同,宽带隙半导体具有较大的「能带间隙」,这使它们成为电子和光相关技术的理想候选材料。本文重点介绍碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)和金刚石等材料,每种材料都具有独特的特性,可用于不同的器件。
图1 | 从材料、器件和应用角度详细概述宽带隙半导体。
与普通半导体相比,宽带隙半导体材料可以在更高的温度下工作,并能承受更大的功率(如表 1 所示),因此,它们非常适合制造高能效晶体管(电子产品中的开关)、发光二极管(LED)和激光器。这些半导体有助于制备各种器件:电子器件,它们可以用于制备工作在高功率和恶劣条件下的晶体管;光电器件,它们还用于LED和激光器,这在照明、通信和医疗设备中非常重要。
最大的挑战是将这些宽带隙半导体与复杂电子器件中的普通硅部件结合起来。这对于制造先进的电子电路来说虽然困难,但却是必要的。在众多宽带隙半导体中,由于SiC可以处理辐射、热量和快速开关⁴,它适合用于太空、汽车和军事领域,GaN非常适合高速和大功率电子器件,但价格昂贵,需要特殊设计⁵。GaN和金刚石材料在高温电子领域大有可为,但仍存在一些问题,如寻找合适的材料与它们相匹配,以及提高它们的性能。由于反向器是电子电路的关键部分,作者进一步讨论了宽带隙半导体用于逻辑反向器的问题。本文探讨了不同宽带隙半导体作为反向器的工作性能(如图 2 所示),氧化铟镓锌(IGZO)性能是最好的,其次是 SiC、GaN 和 In₂O₃⁶,它们都能很好地制作电路;Ga₂O₃ 和金刚石反相器性能一般,但它们有潜力变得更好。图 3 展示了该研究团队最近在 Ga₂O₃ NMOS 逻辑反相器方面取得的进展。
表1 | 宽带隙半导体的性能。
图 2 | 不同宽带隙半导体的电流(A/A)和电压(V/V)反相器增益的汇总。
图 3 | Ga₂O₃ NMOS 逻辑反相器⁸。© 2023 AIP
之后,作者讨论了纳米材料在电子学中的应用。碳纳米管是纳米级别的小管子,应用中一些半导体中,具有良好的电子特性,它们正被用于制造更高效的电子产品。另一方面,ZnO纳米线是ZnO的纳米细线,可用于柔性材料,制备可弯曲的电子器件⁷。In₂O₃ 纳米纤维是一种超细纤维,因为它们不仅能让光线通过,还具有良好的电气性能, 因此,In₂O₃非常适合用于制备透明电子器件和电子产品,如某些屏幕和显示器。然而,我们必须了解宽带隙半导体相对于传统材料的重要性, 例如,用于 3D 电子的ZnO,因为它具有柔韧性和成本效益, 它非常适合在塑料上制造电子产品; 此外,ZnO还适用于射频识别(RFID)标签,如商店中使用的安全标签,使用ZnO可以降低成本。
总之,宽带隙半导体在未来的电子和光基技术领域是非常有潜力的。它们可以做到普通半导体做不到的事情,比如在高温下工作和处理更多的功率。这对于制造更好的电子产品非常重要,比如高能效设备和发光二极管等使用光的设备。虽然存在一些挑战,但这些材料在改进技术方面具有很大的潜力。
Revolution in electronics: the dawn of super-powered semiconductors1
This review article is about a special type of material called wide-bandgap semiconductors (Figure 1)¹⁻³. Unlike common semiconductors such as silicon, these have a larger "energy bandgap". This makes them good candidates for electronic and light-related technologies. This article focuses on materials like SiC (silicon carbide), GaN (gallium nitride), ZnO (zinc oxide), and diamond, each of which has unique properties that make them useful for different devices. Wide bandgap semiconductors can work at higher temperatures and handle more power than usual semiconductors (Table 1). This is why they're great for making things like energy-efficient transistors (which are like switches in electronics), light-emitting diodes (LEDs), and lasers. These semiconductors are used to make various devices: Electronic devices,for example, they're used in transistors that can work with high power and in harsh conditions;Optoelectronic devices, they are also used in LEDs and lasers, which are important in lighting, communications, and medical equipment.
The big challenge is combining these wide-bandgap semiconductors with regular silicon parts in complex electronics. This is difficult but necessary to make advanced electronic circuits. Among many wide bandgap semiconductors, SiC is good for use in space, cars, and the military because it can handle radiation, heat, and fast switching⁴. GaN is great for high-speed and high-power electronics, but it's expensive and requires special designs⁵. The gallium oxide and diamond materials are promising for high-temperature electronics, but there are still problems in finding the right materials to work with them and improving their performance. Initially let's investigate the use of wide bandgap semiconductors for logic inverters. Inverters are a key part of electronic circuits. The article looks at how well different wide-bandgap semiconductors work as inverters (Figure 2). IGZO (a kind of semiconductor material) does the best job, followed by SiC, GaN, and In₂O₃⁶. They all work well for making circuits. However, Ga₂O₃ and diamond aren't as good yet, but they have the potential to get better. Recent progress related to the Ga₂O₃ NMOS logic inverter from Prof. Li group is showcased in Figure 3.
This is followed by a discussion of the use of nanomaterials in electronics. Carbon nanotubes are small tubes used in some semiconductors for their great electronic properties. They're being used to make more efficient electronics. On the other hand, ZnO nanowires are tiny wires of zinc oxide that can be used on flexible materials to make electronics that bend⁷. Then the In₂O₃ nanofibers are super thin fibers that are used in transparent electronics because they let light pass through and have good electrical properties. However, it is important to understand the importance of wide bandgap semiconductors over traditional materials. For instance, ZnO for 3D electronics: ZnO is good for making electronics on plastic because it's flexible and cost-effective. Moreover, ZnO is also good for RFID tags, like those used in-store security tags, which can be made cheaper with ZnO. It is also important to note that, In₂O₃ is good for electronics you can see through, such as some screens and displays.
In short, wide-bandgap semiconductors are really promising for the future of electronics and light-based technologies. They can do things that regular semiconductors can't do, like work at high temperatures and handle more power. This is important for making better electronics, such as power-efficient devices and things that use light, such as LEDs. While there are some challenges, these materials have a lot of potential to improve technology.
参考文献:
1. Yuvaraja, S., Khandelwal, V., Tang, X. & Li, X. Wide bandgap semiconductor-based integrated circuits. Chip 2, 100072 (2023).
2. van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).
3. Zheng, Z. et al. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 4, 595–603 (2021).
4. Zhang, Y., Udrea, F. & Wang, H. Multidimensional device architectures for efficient power electronics. Nat. Electron. 5 723–734 (2022).
5. Lee, J. Y., Singh, S. & Cooper, J. A. Demonstration and characterization of bipolar monolithic integrated circuits in 4H-SiC. IEEE Trans. Electron Devices 55, 1946–1953 (2008).
6. Chowdhury, N. et al. Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Device Lett. 41, 820–823 (2020).
7. Tsao, S. W. et al. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electron. 54, 1497–1499 (2010).
8. Le, A. T., Ahmadipour, M. & Pung, S. Y. A review on ZnO-based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications. J. Alloys and Comp. 844, (2020).
9. Khandelwal, V. et al. Monolithic β-Ga₂O₃ NMOS IC based on heteroepitaxial E-mode MOSFETs. Appl. Phys. Lett. 122, 143502 (2023).
文章链接:
https://doi.org/10.1016/j.chip.2023.100072
作者介绍
Saravanan Yuvaraja,阿卜杜拉国王科技大学(KAUST)在读博士,他的研究方向:宽带隙半导体的单片三维集成电路的外延、制备和表征。
Saravanan Yuvaraja is a Ph.D. candidate at KAUST whose research focuses on epitaxy, fabrication, and characterization of wide-bandgap semiconductor-based monolithic 3D integrated circuits.
Vishal Khandelwal,阿卜杜拉国王科技大学(KAUST)在读博士,研究方向:用于极端环境操作的 β-Ga₂O₃ 电子器件的外延和制备。
Vishal Khandelwal is a Ph.D. candidate at KAUST whose research focuses on epitaxy and fabrication of β-Ga₂O₃ electronics for extreme environment operations.
Xiao Tang,阿卜杜拉国王科技大学(KAUST)的研究科学家,研究方向:用于可穿戴器件和极端环境操作的 β-Ga₂O₃ 电子器件的外延和制备。
Xiao Tang is a research scientist at KAUST whose research focuses on epitaxy and fabrication of β-Ga₂O₃ electronics for wearable and extreme environmentoperations.
李晓航,阿卜杜拉国王科技大学(KAUST)副教授,电子工程与应用物理专业带头人。他致力于超宽带隙半导体外延方面的工作,是半导体深紫外激光研究的先驱者之一,在BAlN和Ga₂O₃等新型第三代半导体研究做出了开创性的成果,并赢得了众多奖项。
Xiaohang Li, Assoc. Prof. at KAUST, leads in Electrical Eng. & Applied Physics. His work in UWBG semiconductor epitaxy led to the first UWBG CMOS and UVC laser advancements, earning numerous awards.
关于Chip
Chip(ISSN:2772-2724,CN:31-2189/O4)是全球唯一聚焦芯片类研究的综合性国际期刊,已入选由中国科协、教育部、科技部、中科院等单位联合实施的「中国科技期刊卓越行动计划高起点新刊项目」,为科技部鼓励发表「三类高质量论文」期刊之一。
Chip期刊由上海交通大学出版,联合Elsevier集团全球发行,并与多家国内外知名学术组织展开合作,为学术会议提供高质量交流平台。
Chip秉承创刊理念: All About Chip,聚焦芯片,兼容并包,旨在发表与芯片相关的各科研领域尖端突破性成果,助力未来芯片科技发展。迄今为止,Chip已在其编委会汇集了来自14个国家的70名世界知名专家学者,其中包括多名中外院士及IEEE、ACM、Optica等知名国际学会终身会士(Fellow)。
Chip第二卷第四期已于2023年12月在爱思维尔Chip官网以金色开放获取形式(Gold Open Access)发布,欢迎访问阅读本期最新文章。
爱思唯尔Chip官网:
https://www.sciencedirect.com/journal/chip