Chip10 Science | 面向边缘学习的全集成类脑忆阻器芯片

FUTURE远见| 2024-04-01

Future|远见

Future|远见future选编

工作简介

当前,生成式人工智能已引爆新一轮智能革命的发展浪潮,大算力支撑下的人工智能技术极大改变着人类的生产生活方式。可随之而来的海量参数令算力需求持续攀升,如何解决庞大的算力缺口,实现能效比的大幅提升,正在变得日益迫切。高算力、高能效芯片作为算力的具体载体,已成为驱动本轮智能革命发展的核心底座,更是推动人类社会不断发展的动力源泉。

面向传统存算分离架构制约算力提升的重大挑战,清华大学集成电路学院吴华强教授、高滨副教授聚焦忆阻器存算一体技术研究,探索实现计算机系统新范式。忆阻器存算一体技术从底层器件、电路架构和计算理论全面颠覆了冯·诺依曼传统计算架构,可实现算力和能效的跨越式提升,同时,该技术还可利用底层器件的学习特性,支持实时片上学习,赋能基于本地学习的边缘训练新场景。当前国际上的相关研究主要集中在忆阻器阵列层面的学习功能演示,然而实现全系统集成的、支持高效片上学习的忆阻器芯片仍面临较大挑战,至今还未实现,主要在于传统的反向传播训练算法所要求的高精度权重更新方式与忆阻器实际特性的适配性较差。

图1 支持片上学习的忆阻器芯片及其测试系统。

为解决上述难题,课题组基于存算一体计算范式,创造性提出适配忆阻器存算一体实现高效片上学习的新型通用算法和架构(STELLAR),有效实现大规模模拟型忆阻器阵列与CMOS的单片三维集成,通过算法、架构、集成方式的全流程协同创新,研制出全球首颗全系统集成的、支持高效片上学习的忆阻器存算一体芯片。该芯片包含支持完整片上学习所必需的全部电路模块,成功完成图像分类、语音识别和控制任务等多种片上增量学习功能验证,展示出高适应性、高能效、高通用性、高准确率等特点,有效强化了智能设备在实际应用场景下的学习适应能力。相同任务下,该芯片实现片上学习的能耗仅为先进工艺下专用集成电路(ASIC)系统的3%,展现出卓越的能效优势,极具满足人工智能时代高算力需求的应用潜力,为突破冯·诺依曼传统计算架构下的能效瓶颈提供了一种创新发展路径。

图2 基于忆阻器存算一体实现片上学习的通用算法和架构。

该研究成果以「面向边缘学习的全集成类脑忆阻器芯片」(Edge learning using a fully integrated neuro-inspired memristor chip)为题在线发表在《科学》(Science)上。论文通讯作者为清华大学集成电路学院高滨副教授和吴华强教授,清华大学集成电路学院博士生张文彬、博士后姚鹏为论文的共同第一作者。

图3 忆阻器芯片与传统数字芯片的能耗对比。

清华大学集成电路学院钱鹤、吴华强教授团队长期致力于基于忆阻器的存算一体技术研究,从器件制备、工艺集成、电路设计及架构与算法优化等多层次实现创新突破,先后在《自然》(Nature)、《科学》(Science)、《自然·纳米技术》(Nature Nanotechnology)、《自然·电子》(Nature Electronics)、《自然·机器智能》(Nature Machine Intelligence)等顶级期刊以及国际电子器件会议(IEDM)、国际固态半导体电路大会(ISSCC)等领域内顶级国际学术会议上发表多篇论文。近期,团队突破了28nm工艺的忆阻器/CMOS混合大规模集成技术,开始进入风险量产阶段。

该成果入选《半导体学报》的2023年度「中国半导体十大研究进展」,入选科技日报社主办的2023年国内十大科技新闻,被人民日报、科技日报、中国日报、环球时报等多家媒体广泛报道。

论文链接:

https://www.science.org/doi/10.1126/science.ade3483

通讯作者简介

高滨,清华大学集成电路学院副教授。2008年本科毕业于北京大学物理系,2013年获得北京大学微电子学与固体电子学专业理学博士学位。2015年加入清华大学,现主要从事先进存储器和存算一体芯片的工艺与系统协同优化研究,先后在《自然》(Nature)、《科学》(Science)等顶级期刊以及国际电子器件会议(IEDM)、国际固态半导体电路大会(ISSCC)等领域内顶级国际学术会议上发表多篇论文。

第一作者简介

张文彬,清华大学集成电路学院博士生,研究方向为基于忆阻器的存算一体技术。